On the local differential geometry of complete intersections

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential-geometric Characterizations of Complete Intersections

We characterize complete intersections in terms of local differential geometry. Let X ⊂ CPn+a be a variety. We first localize the problem; we give a criterion for X to be a complete intersection that is testable at any smooth point of X. We rephrase the criterion in the language of projective differential geometry and derive a sufficient condition for X to be a complete intersection that is com...

متن کامل

Which Schubert varieties are local complete intersections?

We characterize by pattern avoidance the Schubert varieties for GLn which are local complete intersections (lci). For those Schubert varieties which are local complete intersections, we give an explicit minimal set of equations cutting out their neighborhoods at the identity. Although the statement of our characterization only requires ordinary pattern avoidance, showing that the Schubert varie...

متن کامل

On the Regularity of Products and Intersections of Complete Intersections

This paper proves the formulae reg(IJ) ≤ reg(I) + reg(J), reg(I ∩ J) ≤ reg(I) + reg(J) for arbitrary monomial complete intersections I and J , and provides examples showing that these inequalities do not hold for general complete intersections.

متن کامل

On the Connectivity of Some Complete Intersections

We show that the complement of a degree d hypersurface in a projective complete intersection, whose defining equations have degrees strictly larger than d, has a rational connectivity higher than expected. The key new feature is that a positivity result replaces the usual transversality conditions needed to get such connectivity results.

متن کامل

On the Futaki Invariants of Complete Intersections

In 1983, Futaki [2] introduced his invariants which generalize the obstruction of Kazdan-Warner to prescribe Gauss curvature on S. The Futaki invariants are defined for any compact Kähler manifold with positive first Chern class that has nontrivial holomorphic vector fields. Their vanishing are necessary conditions to the existence of Kähler-Einstein metric on the underlying manifold. Let M be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Séminaire de théorie spectrale et géométrie

سال: 1995

ISSN: 2118-9242

DOI: 10.5802/tsg.162